Derivatives



d
dx
[k] = 0
d
dx
[x] = 1
d
dx
[kx] = k
d
dx
[xn] = n · xn – 1 (1)
d
dx
[kxn] = n · kxn – 1 (1)
d
dx
[k · u] = k · u’
d
dx
[u + v] = u’ + v’ (2)
d
dx
[u – v] = u’ – v’ (3)
d
dx
[uv] = vu’ + uv’ (4)
d
dx
u
v
 = 
vu’ – uv’
 (5)
d
dx
[f(u)] = f ’(u) · u’ (6)
  1. Power rule   
  2. Sum rule
  1. Difference Rule   
  2. Product rule
  1. Quotient rule   
  2. Chain rule
d
dx
[ex] = ex
d
dx
[eu] = eu · u’
d
dx
[ax] = ln(a) · ax
d
dx
[loga(x)] = 
1
ln(a) · x
d
dx
[ln(x)] = 
1
x
d
dx
[ln(u)] = 
'u’
'u
d
dx
[sin(x)] = cos(x)
d
dx
[cos(x)] = –sin(x)
d
dx
[tan(x)] = sec²(x) = 
1
cos²(x)
d
dx
[csc(x)] = –csc(x) · cot(x)
d
dx
[sec(x)] = sec(x) · tan(x)
d
dx
[cot(x)] = –csc²(x)
d
dx
[arcsin(x)] = 
1
√(1 – x²)
d
dx
[arccos(x)] = 
–1
√(1 – x²)
d
dx
[arctan(x)] = 
1
1 + x²